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ABSTRACT

In Escherichia coli, the replication origin oriC
consists of two functional regions: the duplex
unwinding element (DUE) and its flanking
DnaA-assembly region (DAR). ATP-DnaA molecules
multimerize on DAR, unwinding DUE for DnaB
helicase loading. However, DUE-unwinding mech-
anisms and functional structures in DnaA-oriC
complexes supporting those remain unclear. Here,
using various in vitro reconstituted systems, we
identify functionally distinct DnaA sub-complexes
formed on DAR and reveal novel mechanisms in
DUE unwinding. The DUE-flanking left-half DAR
carrying high-affinity DnaA box R1 and the
ATP-DnaA-preferential DnaA box R5, t1-2 and 11-2
sites formed a DnaA sub-complex competent in
DUE unwinding and ssDUE binding, thereby sup-
porting basal DnaB loading activity. This
sub-complex is further subdivided into two; the
DUE-distal DnaA sub-complex formed on the ATP-
DnaA-preferential sites binds ssDUE. Notably, the
DUE-flanking, DnaA box R1-DnaA sub-complex
recruits DUE to the DUE-distal DnaA sub-complex
in concert with a DNA-bending nucleoid protein IHF,
thereby promoting DUE unwinding and binding of
ssDUE. The right-half DAR-DnaA sub-complex
stimulated DnaB loading, consistent with in vivo
analyses. Similar features are seen in DUE unwind-
ing of the hyperthermophile, Thermotoga maritima,
indicating evolutional conservation of those
mechanisms.

INTRODUCTION

Localized DNA-duplex unwinding is a fundamental event
during the initiation of chromosomal replication. This
event is tightly regulated by an initiation complex, a
highly ordered nucleoprotein complex (which includes

AAA+ family proteins) that is conserved in all domains
of life (1-3). In Escherichia coli, DnaA, a AAA+ protein,
forms a specific multimer with the replication origin,
oriC, to yield the initiation complex (4-6). In this
complex, the DnaA-binding protein DiaA stabilizes
DnaA multimers (7,8).

Escherichia coli oriC carries two functional regions: an
AT-rich duplex unwinding element (DUE) [including an
AT-cluster, and AT-rich 13-mer repeats termed L (left),
M (middle) and R (right)] and a flanking DnaA assembly
region (DAR) (including DnaA boxes R1-5, I1-3 and
t1-2) (Figure 1A) (5,6,9). Unlike ADP-DnaA—oriC
complexes, ATP-DnaA-oriC complexes specifically
unwind the DUE in the presence of superhelical tension,
resulting in the open complex (10-12). The T-rich strand,
but not the A-rich strand, of the resultant single-stranded
(ss)DUE binds to an ATP-DnaA oligomer, which stabil-
izes the open complex (13-15). A cluster of T within
ssDUE is indicated to be crucial in the DnaA binding
(13,16). DnaB helicases are then loaded onto the ssDUE
with the aid of both DnaA and the helicase-loader, DnaC.
This is followed by the sequential loading of DnaG
primase and the DNA polymerase III holoenzyme
(4,17,18).

DnaA comprises four distinct domains (6). Domain 1
interacts with multiple proteins including DnaB, DiaA
and the DnaA domain I within another protomer in the
DnaA complexes (7,8,19,20). Domain II is a flexible linker
(19,21). Domain III contains motifs characteristic of the
AAA+ family (e.g. Walker A/B, Sensor 1/2 and an
Arg-finger) (22,23). Domain IV is a DNA-binding
domain with a helix—turn—helix motif (22,24).

Notably, the Arg-finger (Arg285) and B/H motifs
(Val211 and Arg245) within domain III play crucial and
specific roles in ATP-dependent activation of the initiation
complexes (13,25). DnaA Arg285 is required for
inter-ATP-DnaA interactions and co-operative binding
to low-affinity DnaA-binding sites within the oriC DAR
(25). Similar to typical AAA+ proteins, the ATP-DnaA
multimers on oriC likely adopt a spiral structure contain-
ing a central pore, and the DnaA Arg285 Arg-finger
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Figure 1. Proposed E. coli oriC sub-structures and determination of the minimum region required for DUE unwinding in the plasmid oriC. (A) The
overall structure of oriC and its sub-structures proposed in this study are shown at the top of the panel. The AT-rich motifs within the DUE,
IHF-binding site and Fis-binding site are indicated by black, yellow and orange bars, respectively. DnaA binding motifs are indicated by arrowheads
(blue for high-affinity sites R1 and R4 and red for low-affinity sites). The proposed DAR substructures are indicated above of the overall structure.
The oriC regions used for deletion analysis (open bars) are shown below the oriC structure. The supercoiled form of pBSoriC, or its derivatives
(3.4nM), ATP-DnaA (0-60nM) and IHF (55nM) were used for the P1 nuclease assay. The unwinding activity at 60 nM ATP-DnaA is shown below
the heading ‘dsDUE unwinding’. +, wild-type level; —, inactive. (B-D) The number of P1 nuclease-digested oriC DNA molecules per that of input
DNA was analyzed by 1% agarose gel electrophoresis and ethidium bromide staining and shown as a percentage [dsDUE unwinding (%)] (B and C).

The gel images are shown in panel D and Supplementary Figure SI.

interacts with ATP bound to the adjacent protomer
(25,26). Moreover, our recent analysis reveals that unlike
oriC complexes formed with wild-type ATP-DnaA, those
with ATP-DnaA V211A or R245A are specifically defect-
ive in the ssDUE binding, although these mutants preserve
the Arg-finger-mediated inter-DnaA interaction (13).
Hydrophobic or basic moiety of the residue corresponding
to the Val-211 or Arg-245 is highly conserved in DnaA
homologs and thus these residues are named H and B
motifs, respectively. Structural analyses suggest that within
the proposed DnaA multimer spiral, the B/H motifs of
each protomer are regularly spaced on the pore surface,

which likely supports direct and stable binding to
ssDUE (13).

ATP— or ADP-DnaA binds with high affinity to DnaA
boxes R1 and R4, which reside at the both edges of DAR
(27) (Figure 1A). A moderate-affinity site (R2) and
low-affinity sites (R3 and RS, I1-3 and t1-2) located
between R1 and R4 boxes preferentially bind to ATP-
DnaA  oligomers, rather than to ADP-DnaA
(25,28). The formation of ATP-DnaA oligomers at
these moderate- and low-affinity sites is important
for the activation of DnaA—oriC complexes in DUE
unwinding. Also, DAR contains IHF- and FIS-binding
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sites (Figure 1A). IHF and FIS are nucleoid-associated
proteins, and often called histone-like proteins (29). IHF
binding to the IHF-binding site stimulates replication ini-
tiation (30-34); Mutations in the IHF-binding site
decrease the initiation activity of mini-chromosomes and
the chromosomal oriC in vivo. FIS binding and dissoci-
ation support the initiation of replication at a specific time
during the cell cycle (31,34,35).

As described above, an ATP-DnaA—oriC complex is
multifunctional and promotes stepwise reactions of
DUE unwinding, stabilization of the unwound ssDUE
and DnaB loading. Based on the fact that the Arg-finger
and B/H motifs of DnaA are required by only a certain
sub-group(s) of DnaA protomers, we previously suggested
that the ATP-DnaA—oriC complex comprises several
sub-groups of DnaA protomers, each associated with
distinct function (13,25). However, the organization and
specific functions of the DnaA sub-complexes remains
unclear.

In this study, to reveal the fundamental mechanisms
involved in origin unwinding and helicase loading, we
analyze DnaA sub-complexes formed on a set of truncated
oriC fragments and specific activities of those using in vitro
reconstituted systems. Based on the results, we subdivided
the DAR region into four (Figure 1A): the DUE-flanking
(DF), left low-affinity (LL), right low-affinity (RL) and
right-edge (RE) regions (Figure 1A). Particularly, the
DF region carries high-affinity DnaA box R1 and the
LL region carries ATP—DnaA-preferential binding sites
DnaA box R5 and t1-2. A DnaA sub-complex containing
the DUE, DF and LL regions was fully active in DUE
unwinding and ssDUE binding, which supports DnaB
loading basically. In this complex, a DnaA sub-complex
formed on the LL region bind ssDUE, which is specifically
promoted by the DF region-bound DnaA in a cooperative
manner, thereby overall providing structural basis of
ssDUE-binding complex. This process was enhanced by
binding of a DNA-bending protein IHF to the specific
sites between the DnaA-binding sites within the DF and
LL regions. DnaA sub-complexes formed on the RL and
RE regions stimulate DnaA multimerization and DnaB
loading. These results are consistent with those of
previous in vivo analyses. Similar results were obtained
using DnaA ortholog and the cognate oriC from the
ancient hyperthermophilic eubacterium  Thermotoga
maritima, suggesting that the mechanisms we have
identified are highly conserved in eubacterial species.

MATERIALS AND METHODS
Proteins, DNA and buffers

DnaA proteins were purified as previously described
(13,36). IHF was overexpressed in MC1061 cells and
purified as previously described (37). DNA, plasmids
and the buffers used are described in Supplementary Data.

DUE unwinding assay

The assay was performed as previously described (13).
Briefly, DnaA was incubated for 3min at 38°C in buffer
P (20 ul) containing IHF (55nM) and a supercoiled form

of pBSoriC, or its mutant derivative (4 nM), followed by
incubation for 200s at the same temperature in the
presence of P1 nuclease (4 U, Yamasa Co.). After reac-
tions were terminated by addition of 0.5% sodium
dodecyl sulfate (SDS), DNA was extracted with phenol-
chloroform and precipitated with ethanol, and a portion
(1/10vol) was digested with AIwNI, followed by electro-
phoresis in a 1% agarose gel and ethidium bromide
staining.

ssDUE digestion assay using linearized oriC fragments

pOZoriEC3 derivatives were digested with HincIl and
EcoRI, yielding fragments of the vector DNA and
ori-EcoRI. The protruding end generated by EcoRI was
filled in using the DNA polymerase I large fragment and
32P.dNTPs. The labeled DNA fragments (1.3 nM) and the
ATP or ADP forms of DnaA (0-80nM) were incubated
for Smin at 38°C in buffer P (10ul) including IHF
(0-55nM), followed by incubation with P1 nuclease
(50mU) for 2min. ATP- and ADP-DnaA were
prepared as previously described (13). The DNA was
purified using phenol-chloroform extraction. A portion
(2/3vol) was analyzed by electrophoresis in a 6% poly-
acrylamide gel. Radioactivity was analyzed using a
BAS-2500 (Fujifilm).

ssDUE binding analysis by electrophoretic mobility
shift assay

This assay was performed essentially as previously
described (13). ATP-DnaA and 2.5nM of **P-labeled
ssDNA (ssDUE, ssDUE-R1 or ssDUEnon) were
incubated for 10 min at 30°C in buffer G (10 pul) containing
4 ng/ml poly(dA—dT)—~(dA—-dT), and 4 pg/ml poly(dI-dC)-
(dI-dC) in the presence of DAR derivatives (5nM),
followed by 4% polyacrylamide gel electrophoresis
(PAGE) at room temperature. When rmaDnaA was
used, the ATP or ADP forms of tmaDnaA were incubated
for 10 min at 48°C in buffer G (10 ulz) containing tmaDAR
derivatives (10nM) and 2nM of **P -end-labeled DNA
(tma-ssDUE, ssDUEbox1, ssDUEnonl or dsDUEbox1).

DNase I footprint

The end-labeled tma-oriC  fragment (10nM) and
tmaDnaA (0-800 nM) were incubated for 10 min at 48°C
in buffer G (10 ul) containing 5mM calcium acetate and
3mM ATP or ADP, followed by incubation with DNase I
(0.83mU) for 4min at the same temperature. DNA
samples were analyzed by sequencing gel electrophoresis
as described previously (13).

Form I* formation assay

This assay was performed essentially as previously
described (7) (see Supplementary Data).

Pull-down assay

This assay was performed essentially as described previ-
ously (7). The biotinylated oriC DNA derivative or a
control DNA was incubated at 4°C for 10 min in buffer
G (10 ul) containing DnaA (1 uM), HisDnaB (0.5 uM),
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DnaC (0.5uM) and A phage DNA (75ng). Biotinylated
DNA-bound  materials  were  recovered  using
streptavidin-coated beads (Promega), washed in buffer
G’ (12.5 pl) including 12 mM ammonium sulfate, dissolved
in SDS sample buffer and analyzed by SDS-11% PAGE
and silver staining. The biotinylated DNA remained in the
streptavidin-unbound fraction was extracted with phenol—-
chloroform, precipitated with glycogen in ethanol and
analyzed quantitatively by 6% PAGE and ethidium
bromide staining. In parallel, quantitative control DNA
was used for ethanol precipitation and electrophoresis.
The amounts of the isolated DNA were deduced using
those of the control DNA and were used to deduce the
amounts of beads-bound DNA. Fifty to sixty percent of
the input DNA were recovered in the beads-bound
fraction in these experiments.

RESULTS

The R1-RS region in DAR is sufficient for DUE
unwinding of supercoiled oriC

To identify the minimal requirements within the oriC
DAR for DUE unwinding, we performed a P1 nuclease
assay using plasmids containing serial deletions from the
right end of oriC (Figure 1A, Supplementary Figure S1).
In this assay, ATP-DnaA (in the presence of IHF)
unwinds the DUE duplex of a supercoiled form of the
wild-type oriC plasmid, pBSoriC (pBS-WT), or its deriva-
tives (13,30). The resulting ssDNA is susceptible to
cleavage by PI nuclease. The results showed that all the
mutant pBSoriC derivatives, except for pBS-AR4-RS5,
retained the ability to unwind DUE at a level comparable
with that of pBS-WT (Figure 1B and C, Supplementary
Figure S1). In addition, the initial rate of DUE unwinding
was similar to between pBS-WT and pBS-AR4-12
(Supplementary Figure S1). These indicate that pBS-
AR4-12 contained the minimal DAR region required for
DUE unwinding in vitro. The oriC region of pBS-AR4-12
contains the DUE, an ITHF-binding site, the high-affinity
DnaA box R1 and the LL regions t1 and RS (Figure 1A).

ssDUE binding to ATP-DnaA multimers on DAR can
be analyzed using linear oriC

When the oriC region is located on a circular form DNA,
DUE unwinding requires superhelicity (10,30). Also, the
upper strand of the ssDUE containing M and R motifs is
demonstrated to bind to ATP-DnaA multimers on oriC in
a manner dependent on DnaA H-motif Val2ll and
B-motif Arg245 within the AAA+ domain, resulting in
stabilization of the unwound ssDUE state (13). As such,
DUE unwinding is sustained by torsional stress of super-
coiled oriC DNA and ssDUE binding of DnaA multimers.

To eliminate the effect of torsional stress and to specif-
ically analyze the effect of ssDUE binding by DnaA
multimers in DUE unwinding, we developed a novel
assay using linearized oriC DNA (Figure 2). The DUE,
located at the end of the linecar DNA, transiently unwinds
at 38°C by thermal denaturation of the duplex DNA end
(Figure 2A). If the resultant ssDUE forms stable
complexes with ATP-DnaA multimers, then the
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sensitivity of the DNA to PI nuclease should increase.
As the AT-rich M and R motifs within DUE are sufficient
for interaction with ATP-DnaA multimers (13,14), we first
constructed a *?P-end-labeled oriC fragment (ori-EcoRI)
bearing these motifs near the DNA terminus (Figure 2A).
A vector plasmid-derived fragment without the oriC
region (vector) was similarly end-labeled and used as an
internal control. These DNA fragments were then
incubated with ATP-DnaA and P1 nuclease. The
ori-EcoRI DNA (EC3-WT), but not the vector DNA,
was digested in a manner dependent on ATP-DnaA
(Figure 2B and C), P1 nuclease and incubation at 38°C
(Supplementary Figure S2). The efficiency of the digestion
was comparable to that seen for DUE unwinding of super-
coiled pBSoriC (Figure 1).

Moreover, neither the wild-type ADP-DnaA
(Figure 2B and C) nor the ATP-forms of the B/H-motif
mutants (V211A or R245A) (Figure 2D) promoted diges-
tion of EC3-WT by PI nuclease, a result consistent with
that reported in our previous study (13). All these obser-
vations are consistent with the ideas that ATP-DnaA mol-
ecules form a complex with DAR and then bind ssDUE
generated by thermal denaturation of the duplex in a
manner independent of superhelicity and that the resulting
complex stabilizes the unwound form and promotes sen-
sitivity of ssDUE to P1 nuclease.

The DF and LL regions of DAR are crucial in
ssDUE binding

Using this assay, we determined the functional substruc-
tures within the DAR involved in ssDUE binding
(Figure 2E and Supplementary Figure S2). Digestion of
the ssDUE was severely inhibited when DnaA box R1 was
substituted with a non-sense sequence (EC3-RI;
Figure 2E), indicating an important role for DnaA box
R1 in ssDUE binding. Eight percent residual activity of
EC3-R1 may suggest that another sub-complex formed
outside of the RI1 box has a considerable activity in
ssDUE binding, which is effectively enhanced by DnaA—
R1 complex.

Deletion of DnaA boxes R2-4 and the I3 site did not
result in loss of function in this assay (EC3-R4, AR4-R3
and AR4-R2; Figure 2E). However, deletion of 12 moder-
ately inhibited ssDUE digestion and additional serial
deletions of the Il, t2 and RS sites severely inhibited
ssDUE digestion with only 0.6-8% residual activity
(EC3-AR4-12, AR4-I1, AR4-t2 and AR4-RS5; Figure
2E). These results indicate that both the DF and LL
regions, but not the RL and RE regions, are required
for the full activity of ssDUE digestion, suggesting that
the ATP-DnaA multimers formed on the DF and LL
regions are fully active in ssDUE binding. Because the
oriC region between the DUE and the R5 box was suffi-
cient for DUE unwinding when the supercoiled form of
the oriC plasmid was used (Figure 1), ATP-DnaA mol-
ecules bound to the 12 and I1-2 sites within the LL region
could act to assist ssDUE binding in the absence of tor-
sional stress.

We further investigated if the spacing between DUE
and DnaA box RI1 is important for the ori-EcoRI
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Figure 2. ssDUE digestion assay using oriC fragments for analysis of DnaA-DAR complexes. (A) The plasmid, pOZoriCEC3, was digested using
Hincll and EcoRlI, yielding DNA fragments of vector DNA (vector) and ori-EcoRI (EC3-WT). These fragments were end-labeled and incubated
with ATP-DnaA and IHF, followed by analysis using P1 nuclease and polyacrylamide gel electrophoresis. The postulated structure of the DnaA
multimers complexed with ori-EcoRI is also illustrated. An alternative structural model is also conceivable but it is not shown here for the simplicity
(see ‘Discussion’ section). The DnaA domains III and IV and IHF are indicated by orange, pink and yellow balls, respectively. The DnaA
B/H-motifs within domain III are indicated by small red balls. For simplicity, DnaA domains I-II are not shown. The DUE region is indicated
by thick black bars. (B and C) The P1 nuclease sensitivity of the ori-EcoRI (EC3-WT) (1.3nM) was analyzed in the presence of IHF (55nM) and the
indicated concentrations of either ATP-DnaA (ATP) or ADP-DnaA (ADP). Reaction mixtures were incubated for Smin at 38°C, followed by
incubation with P1 nuclease and polyacrylamide gel electrophoresis. A polyacrylamide gel containing the reaction products is shown (B). The
ori-EcoRI (EC3-WT) and the vector remained were quantified, and the relative numbers of the remaining molecules of ori-EcoRI to that of the
vector were deduced. The number obtained in the absence of DnaA was defined as 100% and the relative numbers are plotted as DnaA-dependent
digestion (C). (D) The P1 nuclease sensitivity of ori-EcoRI (EC3-WT) was analyzed as above using 80nM of wild-type ATP-DnaA (WT),
ATP-DnaA V2I11A (V211A) or ATP-DnaA R245A (R245A) in the presence of IHF (55nM). (E and F) The mutant derivatives of pOZoriEC3
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DNA digestion. A previous report using deletion, inser-
tion and substitution mutations within oriC indicates that
the strict spacing, but not nucleotide sequence, between
the DUE R motif and DnaA box R1 on oriC is required
for replication initiation both in vivo and in vitro (38).
Consistently, our results revealed that even a 1-bp inser-
tion or a 2-bp deletion between the 13-mer R motif and
DnaA box RI1 inhibits the specific digestion of the
ori-EcoRI DNA (Figure 2F). These results support the
idea that the strict spacing between DUE and DnaA box
R1 is crucial for the ssDUE binding.

IHF is crucial in ssDUE binding

DUE unwinding is facilitated by IHF that promotes a
sharp bend of DNA (29,30). However, it is unclear
whether this is related to ssDUE binding of ATP-DnaA
or modulation in torsional stress of supercoiled oriC
DNA. Using ori-EcoRI DNA (EC3-WT) and PI
nuclease, we demonstrated that ssDUE digestion
depends on the presence of both DnaA and IHF
(Figure 2G), indicating that stimulation of dsDUE un-
winding requires both. Consistently, ssDUE digestion
was severely inhibited when an ori-EcoRI derivative con-
taining base substitutions (ATCAAC to AGATCG) de-
fective in IHF binding (31) was used (Figure 2G). These
indicate that IHF binding to the IHF-binding site plays a
key role in ssDUE binding.

Based on these results, we propose a mechanism
(termed ssDUE recruitment) that involves THF-induced
DNA bending within the DF region. This can stabilize
the unwound form of DUE by promoting binding
between the ssDUE and the DnaA-DAR LL sub-complex
(see later).

The DnaA box R1 is dispensable in ssDUE binding

In the above experiments, ori-EcoRI carried the DUE and
the DAR in cis. To further investigate the role played by
the DAR in ssDUE binding, we analyzed the interaction
between the ATP-DnaA-DAR complex and the ssDUE
(this time added in trans) using electrophoretic mobility
shift assay (EMSA) in the absence of IHF (Figure 3A).
Previously, we used this EMSA and indicated that
ssDUE-binding activity of ATP-DnaA was specifically
stimulated by the DAR (13). Moreover, a pull-down
assay revealed that the ATP-DnaA-DAR complex
directly binds ssDUE (13).

When the ssDUE containing the 13-mer M and R
motifs was incubated in the presence of both wild-type
DAR and ATP-DnaA at levels comparable to those
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used for in vitro reconstituted mini-chromosome replica-
tion, 20-30% of the input ssDUE bound to the
ATP-DnaA-DAR complexes, forming discrete bands
(WT; Figure 3B-E and Supplementary Figure S3).
By contrast, in the absence of the DAR, no discrete
ssDUE-DnaA  complexes were detected (None;
Figure 3C and E). We also noticed that, in the presence
of DnaA, a small amount of the ssDUE (~7% of the input
amount) remained within the gel wells (WT and None;
Figure 3C). This could be due to the formation of irregu-
lar DnaA aggregates, which then bound to the ssDUE.
These aggregates would not be stable, showing smear
bands by slow dissociation during electrophoresis. These
are consistent with our previous data (13).

Deletions within the right half of the DAR, including
the DnaA boxes R3, I3 and R4, maintained
ssDUE-binding activity at levels similar to that
seen with wild-type DAR (AR4-I3 and AR4-R3;
Figure 3B-E). However, deletion of the DnaA-binding
sites R2, 12 and I1 moderately decreased ssDUE-binding
activity (AR4-R2, AR4-12 and AR4-11; Figure 3B-E).
Further deletions of the 12, R5 and tl sites resulted in a
further decrease in the activity (AR4-12, AR4-R5 and
AR4-11; Figure 3B-E). These observations are consistent
with the idea that the LL region within the DAR plays a
crucial role in the formation of ATP-DnaA multimers
competent for ssDUE binding.

These data are overall consistent with the data of Pl
nuclease assays using the derivatives of pBSoriC and the
ori-EcoRI DNA (Figures 1 and 2). Only a slight difference
was seen in the results of DnaA box R2 deletion. Whereas
DnaA box R2 was dispensable in ssDUE binding of
ori-EcoRI derivatives (EC3-AR4-AR2; Figure 2), this
box facilitated the formation of ssDUE binding of
DnaA multimers in the EMSA (AR4-AR2; Figure 3).
This difference can be explained by stabilities of DnaA
multimers and the difference of the assays (i.e. Pl
nuclease assay versus EMSA) in the time taken for
yielding the reaction products or the data. DnaA
binding to box R2 would become more important for
increasing stability of the DnaA multimers formed on
the LL region in a co-operative manner, thereby inhibiting
the dissociation of these multimers during electrophoresis.
This idea is consistent with the fact that DnaA box R2 has
a moderate affinity for DnaA (Ky would be 20-40nM)
(9,27) (see ‘Discussion’ section).

We next asked whether DnaA box R1 is required
for the formation of ssDUE-binding-competent multimers
(Figure 3B, C and F). Notably, the mutant DAR lacking
DnaA box R1 (AR1) maintained ssDUE-binding activity

Figure 2. Continued

were constructed and digested with EcoRI and Hincll. The resultant ori-EcoRI derivatives are shown using black and gray bars, which indicate
regions bearing wild-type sequences and base substitutions, respectively (E). In (F), only the DNA constructs between the DUE M and DnaA box
R1 of ori-EcoRI derivatives are shown. The wild-type sequences and base substitutions are indicated by upper- and lower case, respectively. In (E)
and (F), those fragments (1.3nM) and vector fragments were incubated as above in the presence of IHF (55nM) and ATP-DnaA (80 nM), followed
by incubation with Pl nuclease. Relative levels in DnaA-dependent digestion of EC3-WT derivatives were deduced as above (see Supplementary
Figure S2 for details). (G) EC3-WT (WT) and EC3-ibs (ibs) were incubated as above with the indicated concentrations of IHF in the presence (+) or
absence (—) of ATP-DnaA (80nM), followed by incubation with P1 nuclease. The relative molecular number of remaining ori-EcoRI was quantified
as above, and that obtained in the absence of both DnaA and IHF was defined as 100%. This was used to deduce the relative levels of
IHF-dependent digestion (shown as percentages, ‘IHF-dependent digestion’).
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Figure 3. EMSA for ssDUE-binding activity of ATP-DnaA-DAR complexes. (A) Schematic of the assay. ATP-DnaA was incubated with DAR
and end-labeled ssDUE, followed by EMSA. The symbols for DnaA are the same as those used in Figure 2A. **P-labeled M28 DNA (**P-ssDUE),
back bar; DAR derivatives, green bar. An alternative structural model is also conceivable but it is not shown here for the simplicity (see ‘Discussion’
section). (B=F) The motifs within DAR are shown using the same symbols as in Figure 1. (B) ATP-DnaA (0-60nM) and **P-ssDUE (2.5 nM) were
incubated in the presence or absence (None) of the indicated DAR derivatives (5nM), followed by EMSA. Representative gel images are shown (C),
where — and free ssDUE indicate no DnaA and protein-free ssDUE, respectively. The amounts of ssDUE-ATP-DnaA-DAR complexes (Complex)
were quantified using the data shown in (C) and Supplementary Figure S3 and the relative amounts of the complexes to the input ssDUE were
plotted as ssDUE binding (%) (D-F). The values obtained using 60 nM ATP-DnaA are shown in (B) (‘ssDUE binding’). Accordingly, the relative
activity levels are highlighted using differently grayed bars to indicate the DAR derivatives (closed, 100-80% of the wild-type level; shaded, 50-30%
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at the wild-type level (Figure 3B, C and F), indicating that
ssDUE-binding DnaA sub-complexes do not include
DnaA box RI1. Taken together with the data described
above and the requirement for DnaA box R1 for ssDUE
digestion in the linear oriC-P1 nuclease assay (Figure 2E),
we infer that the DnaA sub-complex formed on the LL
region is competent in ssSDUE binding and the DnaA-DF
(box R1) sub-complex recruits ssDUE to the DnaA-LL
sub-complex via DNA bending by IHF and interaction
between the LL-DF DnaA complexes (see later). This
idea can explain that DnaA box RI1 plays a specific and
crucial role in ssDUE binding of ATP-DnaA-DAR
complexes only in cases where DnaA box Rl is in cis to
the DUE.

Role for DnaA-bound box R1 and box R3 in DnaA
multimerization

The R4 and 13 sites within the RE region were deleted with
the box R1 without significant loss of activity (AR4-
I3ARI1; Figure 3B and F). Additional deletions, including
that of DnaA box R3, moderately inhibited ssDUE-
binding activity (AR4-R3ARI1; Figure 3B and F),
suggesting that DnaA box R3 within the RL region stimu-
lates the formation of ssDUE-binding-competent
ATP-DnaA multimers in the absence of DnaA box R1.

As suggested above, DnaA boxes R2 and R3 would
increase the stability of ATP—DnaA multimers formed
on the LL region in a co-operative manner. This is con-
sistent with the fact that DnaA box R2 has a moderate
affinity for DnaA (Ky would be 20-40nM) (9,27). The
effect of R3-deletion was seen specifically in cases where
the DAR lacked DnaA box R1, suggesting that stability of
ATP-DnaA multimers formed by binding to DnaA box
R2 and its flanking region can be facilitated by either
DnaA box R1 or R3 and co-operative binding of DnaA.

It should be also noted that in EMSA, we used the
DnaA concentrations ranging from 0 to 80nM. These
DnaA concentrations are reasonable because these are
also used for the reconstitution of mini-chromosome rep-
lication using purified proteins in vitro (25). Therefore,
under our experimental conditions, formation of
abnormal DnaA multimers on DAR lacking DnaA
boxes R1 and R4 due to extremely high DnaA concentra-
tions is unlikely.

Unique role for the DUE-flanking DnaA box R1 in
ssDNA recruitment

We next investigated a unique role for the R1 box. In view
of the fact that, when the DUE and box R1 are arranged
in cis, IHF supports ssDNA binding of DnaA—oriC
complexes (Figure 2F), we hypothesized that the ssDUE
is recruited to LL-bound DnaA multimers via
IHF-mediated DNA bending within the DF region
(Figure 2A). In this context, we further hypothesized
that DnaA box R1 (DF region)-bound DnaA directly
interacts with the ATP—-DnaA multimers formed on the
LL region, which enhances their accessibility to the
flanking ssDUE, thereby facilitating ssDUE binding and
open complex formation.

Nucleic Acids Research, 2012, Vol. 40, No. 4 1655

To test this hypothesis, we performed an EMSA using
ATP-DnaA, a number of DAR derivatives, and a 5'-tailed
ss-ds oriC DNA fragment containing the ssDUE and
dsDNA bearing the DnaA box R1 (ssDUE-R1), or a
control non-sense sequence (ssDUE-non) (Figure 4A).
ssDUE-R1 formed complexes with the R1 box-deleted
DAR (AR1) in an ATP-DnaA-dependent manner
2.7-fold more efficiently than ssDUE-non (ARI;
Figure 4B-E and Supplementary Figure S4). ssDUE-non
and ssDUE alone showed a comparable activity in ATP—
DnaA-dependent DAR binding (data not shown) (13).
These results indicate that DnaA box R1 plays a unique
role in promoting ssDUE binding to ATP-DnaA
multimers when it is adjacent to the DUE. This is consist-
ent with the above hypothesis that the ssDUE is recruited
by DnaA bound to the R1 box and the idea that DnaA
sub-complexes formed on oriC have different roles.

Deletion analysis showed that AR4-R3AR1 DNA was
sufficient to support ssDUE-R1 binding (Figure 4D). This
is consistent with the idea that DnaA boxes R3-4 and
the I3 site are basically dispensable for the formation
of ssDUE-binding-competent ATP-DnaA multimers
(Figure 3). Additional deletions, including that of DnaA
box R2, decreased ssDUE-R1 binding activity consider-
ably (AR4-R2ARI1; Figure 4D). Also, similar features
were seen even in binding of ssDUE-non (Figure 4C).
These are consistent with the idea that an ATP-DnaA
oligomer, complexed with the LL region, forms a
sub-complex that is crucial for ssDUE binding, and is
stabilized by DnaA bound to the RL region.

DnaA sub-complexes formed on the DF-LL regions are
active in DnaB loading

After unwinding of the duplex DUE, DnaB is loaded onto
the resulting ssDUE. This process is mediated by DnaA
and DnaC. Previous studies show that binding of multiple
DnaAs to oriC is required for a stable interaction
with, and loading of, DnaB (7,19,20). Therefore, we
investigated whether DnaB loading is dependent on a
specific region within the DAR using a form I* assay. In
this assay, ssDUE-loaded DnaB helicases further unwind
the duplex DNA in the presence of DNA gyrase, resulting
in the production of a highly negatively supercoiled form
called form I* (39). The results showed that deletion of the
RL and RE regions (pBS-AR4, pBS-AR4-13 and
pBS-AR4-R2; Figure SA and B) maintained form I* for-
mation at ~50% of that seen for the pBS-WT. This
suggests that DnaA oligomers, complexed with the DF
and LL regions, form a sub-complex associated with
baseline activity levels for DnaB loading, and that this
activity is stimulated by DnaA oligomers complexed
with the RL-RE regions, including the R4 box. This
also is consistent with the idea that DnaA sub-complexes
formed on oriC have different roles.

Further serial deletions of the 12, I1, 12, R5 and t1 sites
decreased the formation of form I* to 26%, or less, of that
seen for pBS-WT (pBS-AR4-12, pBS-AR4-1I1, pBS-AR4—
12 and pBS-AR4-RS; Figure SA and B). These results are
in broad agreement with those seen in the ori-EcoRI
ssDUE digestion assay (Figure 2), rather than with those
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Figure 4. ssDUE recruitment activity by DnaA box R1 residing in cis to the DUE. (A) A schematic of the assay. Sg/mbols are the same as those used
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seen in the supercoiled oriC unwinding assay (Figure 1). DnaA sub-complexes formed on the RL-RE regions
pBS-AR4-12, which was active in DUE unwinding enhance DnaB binding
(Figure 1), was virtually inactive in form I* formation. ~ We also investigated the DnaB-binding activity of the

These results suggest that stable ssDUE binding by DnaA-DAR sub-complexes by pull-down assay using a
DnaA oligomers complexed with the LL region is a pre- biotinylated DNA. In this assay, we used hexahistidine-
requisite for DnaB loading. fused DnaB (HisDnaB) to distinguish DnaA from DnaB
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deduced as described in ‘“Materials and Methods’ section. The relative amount of recovered DnaB for the bioWT recovered was defined as 1.0 and
those for the bioWT derivatives recovered were deduced and shown as DnaB binding (C). Accordingly, the relative activity levels for the derivatives
are indicated by grayed bars as above. Also, the mean numbers and their standard deviations for the recovered protein molecules per the recovered
DNA were indicated (E).
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by SDS-PAGE. Activities of HisDnaB and intact DnaB
were similar in a DnaB-loading assay using
mini-chromosome, DnaA, DnaB and DnaC proteins (i.e.
the form I* assay), a mini-chromosome replication system
reconstituted with purified proteins and an in vivo dnaB
mutant-complementation assay (data not shown). ATP-
DnaA, HisDnaB and DnaC were co-incubated in the
presence of biotinylated DNA bearing the wild-type
oriC, its derivative, or a control sequence. The resultant
complexes formed on the DNA were isolated using
streptavidin beads (Figure 5C and D). Consistent with
the previous results (7), HisDnaB and DnaC were
assembled with ATP-DnaA multimers on the wild-type
oriC DNA (bioWT) (Figure 5C). The number of recovered
molecules per bioWT was 9.1 for DnaA, 1.3 for HisDnaB
hexamers and 2.0 for DnaC hexamers (Figure 5D),
indicating that multiple DnaA molecules on DAR
interact with DnaB-DnaC complexes. These numbers
are reasonable as an initial complex for replication,
although a small number of proteins might be dissociated
from the oriC complexes by a washing step in this assay. A
deletion of the RL and RE regions (bioAR4-R2 in Figure
5) sustained DnaA, HisDnaB and DnaC binding at ~50%
of that seen for bioWT (Figure 5A, C and D). These
indicate that a DnaA-DF-LL sub-complex has a basal
affinity for DnaB binding, which is stimulated by DnaA
oligomers complexed with the RL-RE regions. This is
consistent with the data in the form I* assay showing
that DnaA oligomers complexed with the DF-LL region
sustain a basal level of DnaB helicase activity (Figure SA
and B).

A further deletion including 12, and I1-2 sites
(bioAR4-t2 in Figure 5) also sustained binding of
DnaA, DnaB and DnaC at a level similar to that seen
for the bioAR4-R2 (Figure 5A, C and D). Taking into
consideration that pBS-AR4—12 is virtually inactive in the
form I* assay (Figure 5A and B) and that 12, and 11-2 sites
within the LL regions are required for ssDUE binding
(Figure 2), these results support the idea that stable
ssDUE binding, in addition to DnaB binding, by DnaA
oligomers complexed with the LL region is crucial for
DnaB loading on ssDUE and activation of its helicase
function. In these pull-down assays, the recovery of
DnaA predominantly depended on oriC DNA, and only
a slight amount of DnaA was recovered using a control
DNA (biovector), which is most likely due to the
nonspecific, weak DNA binding of DnaA and did not
cause significant recovery of HisDnaB and DnaC
(Figure 5C).

Evolutional conservation of oriC sub-structures for the
DUE recruitment

To investigate the evolutionary conservation of the mech-
anism underlying ssDUE recruitment, we analyzed the
initial complexes formed by T. maritima oriC (tma-oriC)
and tmaDnaA. A previous study indicated that ATP-
tmaDnaA forms a highly ordered complex with tma-oriC
more efficiently than ADP-tmaDnaA (40). In the present
study, we used DNase I footprint analysis to show that
ATP-tmaDnaA interacts with tmaDnaA boxes 2—5 within

tma-oriC at protein concentrations of >50 nM (Figure 6A)
and with box 1 at >400 nM. By contrast, ADP—tmaDnaA
interacted with boxes 1-5 only weakly, even at 800 nM.
These results suggest that ATP—tmaDnaA, but not ADP-
tmaDnaA, forms a stable complex on boxes 2-5 in a
co-operative manner.

Using a DUE-deleted tma-oriC fragment and EMSA,
we also found that ATP-rmaDnaA multimers complexed
with tma-oriC specifically bound tma-ssDUE (Figure 6B
and C and Supplementary Figure S5) in a similar manner
to that of E. coli DnaA and oriC. Moreover, using
alanine-substitution mutants of ATP—tmaDnaA, we
showed that ssDUE binding requires Vall76 within the
tmaDnaA H-motif and Lys209 within the B-motif
(which correspond to DnaA Val211 and Arg245, respect-
ively, in E. coli) (Figure 6C). These results are in agree-
ment with the findings showing that these mutant
tmaDnaAs are inactive in oriC unwinding (13) and that
E. coli DnaA V211A and R245A are inactive in ssDUE
binding (Figure 2). Taken together, these results are con-
sistent with the idea that tmaDnaA functions in a similar
manner to E. coli DnaA during the ATP-dependent con-
formational activation of DnaA—oriC complexes.

Next, we asked whether a specific region of the tma-
oriC DAR 1is required for ssDUE binding. Mutations
within boxes 3-5 inhibited tma-ssDUE binding (sub3-5;
Figure 6D and Supplementary Figure S5), whereas muta-
tions in boxes 1 or 2 did not (subl-2; Figure 6D and
Supplementary Figure S5). Consistent with this, deletion
analysis showed that the minimal DNA fragment required
for tma-ssDUE binding includes boxes 3-5 (del-D;
Figure 6 and Supplementary Figure S5), indicating that
these boxes are crucial for the formation of an ATP-
tmaDnaA oligomer competent for ssDUE-binding.

Finally, we used a 5'-tailed ss-ds tma-oriC fragment con-
taining the ssDUE and dsDNA with box 1 (ssDUEbox1),
or a control non-sense sequence (ssDUEnonl), to analyze
whether box 1-bound fmaDnaA promoted ssDUE binding
of tmaDnaA oligomers formed on boxes 2-5 (Figure 6B, E
and F and Supplementary Figure S5). When ATP-
tmaDnaA and tma-oriC del-A DNA, including boxes
2-5 but not box 1, were incubated with ssDUEnonl, the
ATP-tmaDnaA—tma-oriC  del-A  complexes  bound
20-30% of the input ssDUEnonl DNA (Figure 6E), a
level similar to that seen for tma-ssDUE (Figure 6C).
When ssDUEbox1 was used, binding increased 2-3-fold
(Figure 6E), suggesting that the DUE-flanking, box
I-bound tmaDnaA promotes the interaction between the
ssDUE and the ATP-DnaA multimers formed on boxes
2-5; dynamics similar to those seen for E. coli initial
complexes (Figure 4). These observations are consistent
with an idea that formation of functionally distinct
DnaA sub-complexes on oriC is likely conserved during
eubacterial evolution.

We also found that dsDUEboxl DNA, containing
dsDUE and the flanking box 1, was inactive in binding
to ATP-tmaDnaA multimers on boxes 2-5 (Figure 6C
and E). This suggests that both ssDUE and box
I-bound tmaDnaA are required for binding to
ATP-tmaDnaA multimers on boxes 2-5. Efficient
binding of ssDUEboxl to ATP-DnaA was also seen
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T. tengcongensis ATAGGTCCATTAACACTGAAATAACAACITATCCACDAAC 20
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Figure 6. Specific roles for DnaA boxes in 7. maritima oriC. (A) DNase I footprint. ATP— or ADP—tmaDnaA (0-800nM) and **P-labeled rma-oriC
fragments (10nM) were incubated with DNase I, followed by sequencing gel analysis. Strongly or weakly protected sites by ATP-tmaDnaA are
indicated by closed or open rectangles, respectively. The positions of the DUE (AT-2 and AT-3) and tmaDnaA boxes 1-5 are indicated. (B) EMSA
using tmaDnaA, tmaDAR and tma-ssDUE. Various amounts of the wild-type ATP—tmaDnaA (WT) or ATP-forms of tmaDnaA V176A or K209A
were incubated with 10nM of DUE-deleted tma-oriC (tmaDAR WT) DNA, followed by incubation with 2nM of **P -labeled fma-ssDUE and

(continued)
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in the presence of tma-oriC del-D (Figure 6F), which is
consistent with data showing that box 2 is dispensable for
tma-ssDUE binding (Figure 6D). These results support
the idea that the DUE-flanking DnaA box shares a
common and crucial role in promoting ssDUE recruit-
ment in the E. coli and T. maritima initiation complexes.

It should be noted that, in Thermotoga maritima,
Bacillus subtilis and Thermoanaerobacter tengcongensis,
whose DNA unwinding regions have been experimentally
determined (40-42), the spacing between the unwinding
region and the flanking DnaA box is 17 = 3bp (bold
lines in Figure 6G). This feature is also conserved to
that in E. coli (11,41). Also, comprehensive bioinformatic
analysis of eubacterial oriC sequences indicates a similar
feature (Christoph Weigel, personal communications of
unpublished data). These are consistent with the idea
that the distance between the DUE and the flanking
DnaA box is important for initiation of replication.
Indeed, deletions or insertions between the DUE R
motif and DnaA box R1 inhibit the ssDUE unwinding
in vitro (Figure 2F) and replication initiation in vivo (38).
These observations are consistent with the idea that the
ssDUE recruitment and the role for DUE-flanking DnaA
box in this mechanism are evolutionarily conserved.

DISCUSSION

In this study, we report that the DnaA—oriC complex
contains functionally distinct sub-complexes that play
crucial roles during replicational initiation. ATP-DnaA
oligomers complexed with the DAR-DF and -LL
regions form an open complex ready for functional
DnaB loading. ATP-DnaA oligomers complexed with
the LL region are competent for ssDUE binding, which
is facilitated by the DnaA-DF DNA sub-complex. This
process, termed ssDNA recruitment in this study, is sup-
ported by the direct interaction between ATP-DnaA mol-
ecules complexed with the DF and LL regions. In other
words, the DnaA-DF sub-complex can recruit the
unwound ssDUE onto the DnaA-LL sub-complex
(Figure 7A and B), thereby promoting the formation of
an open complex. Moreover, the resultant complex is a
minimum structure competent to DnaB helicase loading
onto ssDUE. These findings reveal novel mechanisms and
conformational dynamics involved in the formation of
initial complexes that have not been previously described.

As mentioned above, the ATP-DnaA sub-complexes
formed on the DAR-LL regions are revealed to be a

key structure in initial complexes (Figures 2 and 7 A).
The formation of the ATP-DnaA-LL sub-complex is
facilitated by either (or both) of the adjacent DF and/or
RL regions (Figures 3 and 4), likely in a co-operative
manner, which is consistent with previous studies
(25,43). The DUE and the DAR-DF and —-LL regions
are fully active during ATP-DnaA-dependent oriC un-
winding and ssDUE binding (Figures 1 and 2), indicating
that the DF region effectively assists ATP-DnaA-LL
sub-complex formation.

We also suggest that DNA bending within the DF
region is another key feature in initial complexes
(Figure 7A and B). The DF region, containing an intact
DnaA box R1 and the IHF-binding site, is required for
ssDUE recruitment (Figures 2 and 7A) suggesting a
mechanism involving I[HF-induced DNA bending within
the DF region, which places R1-bound DnaA and its
flanking ssDUE in close proximity to the DnaA-LL
sub-complex (Figure 7B). This model is in agreement
with reports indicating that R1-bound DnaA and the
IHF promote ATP-DnaA assembly on DnaA box RS
and the I1-2 sites within the LL region (32,43).
Moreover, this model can give reasonable explanation to
the cause of the strict requirement for the spacing between
DUE and DnaA box R1 in DUE unwinding (Figure 2F)
and in replicational initiation (38).

Our current results do not necessarily exclude a previ-
ously proposed model that an unwound complex consists
of a continuous DnaA-ssDUE filament adjacent to the
DnaA-DAR filament (14,44). This model is supported
by a recent report using glutaraldehyde cross-linking ex-
periments which showed that DnaA box-free DnaA mol-
ecules can form oligomers on ssDUE (44). However, this
ssDUE-DnaA interaction is considerably weak, as
indicated in both our previous paper and the present
study (Figure 3) (13). DnaA oligomers formed on the
DAR-LL region evidently have higher affinity for the
ssDUE than DnaA box-free DnaAs; decrease in
the amount of free-ssDUE predominantly depends on
the DAR (Figure 3C and E; Supplementary
Figure S3E). DnaA oligomerization on the DAR would
drastically increase its affinity for ssDUE, most likely by
creating the regular arrangement of the B/H-motifs and
conformational changes within DnaA domain III in an
ATP-DnaA-oligomer spiral (6,13). Notably, DnaA oligo-
mers may induce the so-called ‘linkage effect’, which
can markedly increase their affinity for the ssDUE
by acquiring multiple binding sites (6,8,19,45-47).

Figure 6. Continued

electrophoresis on 4% polyacrylamide gels. The relative amounts in the DUE derivatives bound to the rmaDnaA—tmaDAR complexes to those input
were deduced as described in Figure 3 and plotted as ‘DUE-bound complex (%)’. For tmaDAR WT, see below. (C) The structures of the DUE
derivatives used for EMSA. The DUE derivatives used carry the ssDUE or dsDUE with, or without (A), tmaDnaA box1 (WT) or a non-sense box
(mutant). Upper-strand, black bar; lower strand, light gray bar; maDnaA box 1, open box; non-sense box, shaded box; DUE AT-2 and 3, closed
box. (D-F) EMSA using rmaDnaA and derivatives of maDAR and tmaDUE. Black and shaded bars indicate DAR wild-type sequences and base
substitutions, respectively (D). The DUE derivatives shown in (C) were analyzed as above in the presence of various amounts of wild-type ATP—
tmaDnaA and tmaDAR-delA (E) or its derivatives (F). The relative activities for DUE-tmaDnaA-DAR complex formation were deduced as above
and plotted. The relative activities (++, >50%; +, 20-50%; —, <20%) for DUE-tmaDnaA-DAR complex formation at 80 nM ATP-tmaDnaA are
indicated from experiments using the indicated DAR and DUE derivatives (D). See Supplementary Figure S5 for details. (G) Sequence comparison
of an oriC region carrying the DUE and the flanking DnaA box. The arrowed boxes indicate the position and the orientation of the cognate DnaA
box flanking the DUE. The unwinding motifs determined in vitro using potassium permanganate modification (dark gray) or Pl nuclease digestion
(light gray) are indicated (40-42). Bold lines indicate the number of nucleotides (Length) from the center of the DnaA box to the unwinding motif.
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Figure 7. Model for oriC unwinding, ssDUE recruitment and helicase loading. (A) Summary figure. Black and gray bars indicate sites bearing
predominant and supportive roles, respectively. (B) Model for open complex. The DnaA domains (I, III and 1V) and oriC domains (DUE, DF, LL,
RL and RE) are distinguished using different colors. The DnaA multimer formed on DAR binds ssDUE. SsDUE is recruited by IHF-dependent
DNA bending and interaction of DnaA molecules bound to the DF and LL regions. See text for details. (C) Alternative model for open complex.
The DnaA multimer formed on ssDUE interacts with the DnaA multimer formed on DAR. The DnaA domain III within the DnaA—ssDUE complex
are colored in gray. Only the DUE-LL regions are shown and the DnaA domains I and II are omitted for the simplicity. (D) Model for helicase
loading. DnaA domain I which has a crucial binding site to DnaB is connected to domain II which is a flexible linker to domain III, the AAA+
domain (19). These structural features would support flexible interaction modes and conformational change in oriC—-DnaA-DnaB-DnaC complexes.
DnaC is omitted in this figure for the simplicity. Similar mechanisms would be possible by the alternative model (C). See text and Supplementary

Figure S6 for details.
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In addition, whereas several results including those
of ssDUE-DnaA-DAR interaction modes could be
consistent with the continuous DnaA filament model
(Figures 2-4), the strict requirements for IHF binding
within DAR and for the spacing between DUE and its
flanking DnaA box would be explained quite simply by
the ssDUE recruitment model rather than the continuous
DnaA filament model. IHF binding within DAR should
introduce a break in a DnaA filament, preventing the for-
mation of a DnaA filament continuous from ssDUE to
DAR. It would be difficult for the continuous DnaA
filament model to give likely explanation for the strict
requirement of the spacing, but not specific sequence,
between DUE and DnaA box R1. Also, the data of the
DNase I footprint experiments of E. coli and T. maritma
oriCs suggest that DnaA molecules do not bind to the
spacing between DUE and its flanking DnaA box at a
significant affinity (Figure 6) (7,8,13,25). Besides, if
DnaA forms a multimer on ssDUE and it joins to the
DnaA multimer on DAR, the number of DnaA molecules
complexed with oriC should increase at open complex for-
mation. However, at least in our experiments, increase in
oriC-bound DnaA was not detected during open complex
formation (data not shown). Thus, we suggest that ssDUE
recruitment to the DnaA multimer on DAR is a plausible
mechanism for initiation (Figure 7B). An alternative
model that incorporates the possibility of the DnaA oligo-
merization on ssDUE and meets the strict requirements
for IHF and the DUE-to-R1 spacing might be the struc-
ture that the DnaA oligomer formed on ssDUE interacts
with the DnaA multimer formed on DAR (Figure 7C).

Our study also showed that a truncated oriC carrying
only DUE and the DAR-DF and —LL regions can be
active in DnaB loading (Figures 5 and 7 A). Moreover,
the RL and RE regions were required for full activity in
DnaB helicase function. Given that an ATP-DnaA
oligomer complexed with the DAR-DF and —LL regions
is fully active in oriC unwinding and ssDUE binding
(Figures 1 and 2), our results indicate that a DnaA
sub-complex formed on the ssDUE-DF-LL regions main-
tains the basal level of activity for DnaB loading, which is
specifically stimulated by a DnaA sub-complex formed on
the RL and RE regions (Figure 7A). As the affinity of
DnaA monomers for DnaB is faint (48), we suggest that
the DnaA oligomer formed on the DAR increases the
overall affinity of the DnaA—oriC complexes for DnaB
via the ‘linkage effect’ (45-47). Namely, if a single DnaA
protomer of a DnaA-oriC complex initially binds a
protomer of DnaB hexamer even at a weak affinity, it
should impede diffusion of DnaB, stimulating binding of
a second DnaA protomer in the complex to another DnaB
protomer, which results in marked stimulation in coopera-
tive binding of the proteins and stabilization of the result-
ant DnaA-DnaB-oriC complexes. In addition, as two
DnaB helicases need to be loaded to construct a pair of
replication forks at oriC (49), each of the DnaA
sub-complexes formed on the DF-LL and RL-RE
regions may interact with a single DnaB helicase
(Figure 7D; Supplementary Figure S6), thereby promoting
the loading of a pair of DnaB helicases and subsequent
bidirectional translocation.

Even in vivo, only the left-half of the chromosomal oriC,
including the DUE and the DF and LL regions, is essen-
tial for initiating chromosomal replication and both the
RL and RE regions assist in the initiation at a specific time
during the cell cycle (33,50). This indicates that our
proposed mechanisms in vitro are basically consistent
with in vivo analysis. In the context of our model
(Figure 7D; Supplementary Figure S6), in cells lacking
the right-half of the chromosomal oriC, a single DnaB
helicase can be loaded by DnaA complexes formed on
the left-half oriC, expanding ssDNA region unidirection-
ally. This should allow the second DnaB helicase to load
on the generated ssDNA region in a manner similar to the
reconstruction of the stalled replication forks (51), thereby
establishing bidirectional replication.

Previous experiments using replication  cycle-
synchronized cultures indicate that the ATP-DnaA level
increases to 70-80%, but not 100%, prior to the
replicational initiation (52), which suggests a possibility
that a mixed complex of ATP—and ADP-DnaA molecules
is formed on oriC in vivo to initiate replication. This is
consistent with previous reports indicating that only a
subgroup of DnaA protomers must be the ATP form for
formation of active initiation complexes in vitro (15,25).
Based on the present study, we propose that DnaA
protomers binding to the RL and RE regions would be
compatible with ADP-DnaA without inhibiting the initi-
ation activity (Figures 2-4).

Roles for DnaC in DnaB helicase loading also are con-
sistent with our model. In E. coli, DnaC stably binds
DnaB, but not DnaA (7,51). As mentioned above, DnaB
hexamer stably binds to the DnaA multimer formed on
oriC and thus oriC-DnaA-DnaB-DnaC complexes are
formed with a considerable stability (Figure 5) (7). We
also revealed using a pull-down assay that like the
DnaA multimer on oriC, that on the DAR lacking DUE
form stable complexes with DnaB and DnaC (data not
shown). As DnaB helicase has a ring-like configuration
and a hyperthermophile DnaC-ortholog homooligomer
takes on a spiral configuration, it would be possible that
binding of the DnaC spiral induces conformational
change of the DnaB ring, resulting in opening of the
DnaB ring for loading on ssDNA. This assumption is
based on an analogy of the opening of the replicase
clamp by interaction with the clamp loader complex
(18). DnaC and the subunits of the clamp loader
complex are members of the AAA+ protein family. The
DnaB ring might be inserted in the groove of the DnaA
spiral via interaction with multiple molecules of DnaA
domain I which carries a specific binding site to DnaB
(Supplementary Figure S6) (19). As such, our model
is consistent with a possible mechanism of DnaC-
dependent DnaB loading. It should be noted that unlike
E. coli DnaC, DnaC ortholog from hyperthermophile
A. aeolicus can directly interact with the cognate DnaA
ortholog (53). The resultant A4. aeolicus DnaC-DnaA
complex is proposed to promote the cognate
DnaB loading on the ssDNA via direct interaction of
DnaB with DnaC but not with DnaA. Thus, in
A. aeolicus, stable binding between DnaB and the DnaA
multimer is not assumed in the process of the DnaB
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loading, unlike in E. coli (53). This distinct model implies
that the role of DnaC in DnaB loading is differentiated
during eubacterial evolution. This idea is also consistent
with the fact that several eubacterial organisms
(e.g. T. maritima) do not contain the cognate DnaC (54).

In E. coli, the high-affinity DnaA boxes R1 and R4 are
likely occupied by DnaA throughout the cell cycle (55-57).
DnaA assembly on the LL and RL regions is promoted
in vivo, possibly due to cell cycle-coordinated increases in
the cellular level of ATP-DnaA molecules (52,58). Thus,
we suggest that formation of ssDUE-binding-competent
ATP-DnaA sub-complexes is an important rate-limiting
reaction for the formation of open complexes in vivo.

DiaA protein stimulates the replicational initiation,
which is required for the timely initiation during cell
cycle (7,8). This protein forms homotetramers which
directly binds multiple DnaA molecules and promotes for-
mation of ATP-DnaA—oriC complexes and DUE unwind-
ing in vitro (8). We are currently investigating effects of
DiaA in ssDUE recruitment.

As mentioned above, DUE unwinding in DnaA—oriC
complexes is effectively stimulated by IHF which causes
DNA bending, whereas cells with a scrambled IHF-
binding site are viable (33). This is consistent with
the facts that E. coli has HU protein, another
nucleoid-associated protein causing sharp DNA bending
(59), and that HU binds DNA sequence-non-specifically
and can stimulate DUE unwinding in vitro of the E. coli
and T. maritima oriC plasmids in place of THF (30,40).
Given that HU directly binds to DnaA (60), there is a
reasonable possibility that HU might preferentially bind
to a site flanking to DnaA box RI1 via interaction with
DAR-bound DnaA. Orthologs of HU are widely
distributed  within  eubacterial  species including
T. maritima, whereas some ecubacterial species (e.g.
T. maritima) do not contain a cognate IHF (29,54).

Like replicational initiation, transcriptional initiation
requires the regulated unwinding of duplex DNA and
this could be stimulated by DNA bending (61). For
instance, the bacterial AAA+ transcriptional stimulators,
PspF and NtrC, are suggested to promote DNA bending
by binding the 6>*-RNA polymerase holoenzyme, thereby
stimulating duplex unwinding (62). Therefore, localized
DNA-structural changes, such as DNA bending, could
be a common mechanism for duplex unwinding in both
replication and transcription. Even in eukaryotes, local
reorganization of both chromatin and origin DNA is
crucial for replication initiation (63,64), which might
depend on AAA+ replication proteins.

Like E. coli ATP-DnaA, ATP—tmaDnaA forms oligo-
mers on tma-oriC in a co-operative manner (Figure 6A)
and the resultant complex binds the ssDUE, which is
stimulated by ssDUE recruitment that is dependent on a
DUE-flanking DnaA box (box-1) (Figure 6C-F).
Moreover, the B/H-motifs of fmaDnaA are crucial for
DUE unwinding and ssDUE binding (Figure 6C) (13).
These features are consistent with the idea that the mech-
anisms underlying open complex formation are evolution-
arily conserved among ecubacterial initial complexes.
Furthermore, we found that ATP—tmaDnaA binding to
DnaA box-1 requires higher DnaA concentrations than
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other DnaA boxes within tma-oriC (Figure 6A). Thus,
unlike in E. coli, ssDUE recruitment may be the
rate-limiting reaction for open complex formation in
T. maritima. Consistent with this, DnaA box-1 is indis-
pensable for DUE unwinding (Ozaki and Katayama, un-
published data). This implies that the order of DnaA
assembly might have differentiated during the process of
eubacterial evolution, and may be related to the regulatory
systems they acquired for adaptation. Similarly, in eukary-
otes, the order and timing of replication factors
(i.e. GINS, Cdc45 and Pole) associating with the origin
have a variety, whereas these factors are highly conserved
(65-67).

Besides oriC, E. coli DnaA multimers bind specific
genomic loci bearing the clusters of DnaA boxes and
excuse various activities for the regulation of initiation
(2). These loci include datA for the titration of DnaA,
DARS for the reactivation of DnaA, and dnaAd
promoter for transcriptional auto-regulation (2,9). These
observations are consistent with the idea that multiple
functions of DnaA are regulated by distinct types of
DnaA complexes formed on each DNA region. In other
eubacteria, the architecture of oriC is evolutionally
differentiated in size and the number of DnaA boxes (9).
In many species, the oriC region is longer and bears more
DnaA boxes than that in E. coli. These differences could
be explained by an idea that functionally different,
multiple DnaA sub-complexes are formed on the longer
oriC region for DUE unwinding, DnaB loading, DnaA
titration and DnaA reactivation.

NOTE ADDED IN PROOF

While this paper was in press, the following paper was
published online: Duderstadt,K.E., Chung,K., and
Berger,J.M. (2011) DNA stretching by bacterial initiators
promotes replication origin opening. Nature, doi:10.1038/
naturel0455. This paper reports the crystal structure of a
truncated DnaA ortholog complexed with ssDNA. The
work demonstrates a possible mode of interaction of
DnaA oligomers in ssDNA binding. The structure and
other data in the paper are fully consistent with the
oriC-DnaA complex structure model for the ssDUE
recruitment proposed here as well as the continuous
DnaA filament model proposed by others previously
(14,44). The crystal structure supports the role for
B/H-motifs in ssDUE binding.
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Supplementary Data are available at NAR Online:
Supplementary Materials and Methods, Supplementary
Figures S1-6, Supplementary References (7,13,18-19,
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